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1. Pundamental equations. In the case of unsteady motions in an intrin-
sic gravity fleld it is necessary to find the combined solution of the Ein-

steln gravitational fileld equations and the equations of the conservation of
momentum energy contained in them [1]
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Here RY% 1s the curvature tensor, T‘, the energy-momentum tensor, x the
Einstein gravitational constant, # the heat content per unit mass, v the
specific volume, 1y, the component of four-velocity.

If the analysis 1s limited to centrally-symmetric motions, the space-time
metric may be selected in the following form:
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Henceforth, we shall study only radial flows, when df /df = 0, dg /df = |
In this case the chronometrically-invariant velocity is given by Expression
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Here
5% = e (0dt)? = (Bdr):, 0=V 1—a%/c?, dv=ce"
where 4t 1is an element of proper time, and the components of four-velocity
take the form
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The equations of the conservation of the energy-momentum (1.1) yileld the
equations of mction and the continuity equation. Since dW = Tdo -+ wvdp,
(where T 1s the absolute temperature, and ¢ the entropy), then for the
adiabatic processes considered, the equation of conservation of entropy

d (Wu") __I_ { ==
0x

must also be used.
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The system of equations (1.4) is & complete system of conservation equa-
tions characterizing the adiabatic flows. Substituting the four-velocity
components (1.3) here and taking into account that

S dh + dv
dinV =g =2TN 2% 4 unpag
we obtain a system of equations of the hydrodynamics of radial flows in an
intrinsic gravitational field (1_5)
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Let us note that the expression for the velocity ¢* along the character-
istics of these equations has the same form as in the special theory of rela-
tivity
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This is indeed completely natural since the presence of the gravitational
fleld cannot change the local relationship between the chronometrically-
invariant components of the three-dimensional velocities g%, g, w measured
at each point »r by means of the observer's clock at the same point. However,
as follows from (1.6), the first characteristic on the scattering front

(w = 0) %urns out to be rectilinear in the variables 7 , v which have
physical meaning, while it is curvilinear in the r , ¢ variables.

Let us write down the field equations
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Only two of these equations are independent of (1.5). It is convenient
to write these two equations as
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Equations (1.5) and the first equation of (1.8) determine the solution
p=p(r,t), o=0o(rt), a=a(r,t), A=i(rt), v=v(rt)
for a given equation of state p = p(e) .

1) In the static case g = 0 , the second equation (1.8) yields ar/at= 0,

and from (1.5) we have glnov/dt =0, do/dt =0, therefore
dp 1 dv
= —5p+e) g (1.9)
Furthermore, we have from (1.7)
’dir (re™?) =1—xr’e, er —3—} =xr’p+1—e?

Using these relationships we eliminate v(r) from (1.9)
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Let us note that for p = const the equation of state of the Einstein
closed stetic model of the universe ¢ + 3p = O 1is obtained from (1.10).

We hence conclude that the Einstein model corresponds to the model of a
star with constant negative pressure. PFrom the viewpoint of the external
observer, closeness of such a star means impossibility of intersection of
the 1limits of the star with the geodesic line of any signal, however, the
absence of limits 1s not at all reflected, in principle. Hence, the closed
static model may dbe considered as a self-contained bounded non-Euclidean
formation submerged in an external spatial background, and therefore, closed-
ness in no way denotes the uniqueness of this model of the universe.

Solving (1.10), we determine p(r), then A(r), v(r), which solves the
equilibrium problem completely.

2) Of considerable interest is the study of radial motions of an i1deal
fluid in a specified external gravitational field, for example, the external
or internal Schwarzschild field, when A = A(r), v = v(r) are given functions
of r. It ies easy to see that in this case, by introducing the independent
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variable dri= Adr , Equations (1.5) are reduced to a form analogous to the
hydrodynamics equations of the special theory of relativity, and differing
only in the kind of free terms
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For the external Schwarzschild field
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Here ¥, is the mass of the central body generating the field.

3) 1In the general case of adiabatic flows in an intrinsic gravitational
field, finding the solution of the combined systems of Equations (1.5) and
the first equation of (1.8) is of considerable difficulty. At the conclu-
sion, we will obtain the solution in the asymptotic case of motions with
velocities close to the velocity of light and of the ultra-relativistic equa-
tion of state. Here we propose a method of successive integration of (1.5)
and the first equation of (1.8) by utilizing (1.7).

First of all, let us eliminate the function v = vw(r, t) from (1.5) by
using the second equation of (1.8); we obtain
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Let us transform to the independent variables r, x in (1.12); to do
this, we find the Jacobian of the transformation a(t; r)/a(x; r) and also
3t/3r by using the first equation of (1.7) and the first equation of (1.8);

we have a(r)y 8t Adrw o0 _ A
T Tt T T A “or —A< A4) (119)

Here
Ay =e?, Ay=1+4uprl—e?*, Ay=unrle4e*—1, Ay=un(p-+¢e)(r/0)?
The relations (1.13) reduce Equations (1.12) to the symmetric form
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Let us recall that w, ¢ and p the functions v , ¢ , and Equations

r
{1.4) contain three unimown functions
v=uv(A 1), a==al(h,r), o =0a(A 1

for the selected equation of state, say for puk= g .

These equations may be integrated by the method of characteristics.

After this we determine vy = v(A, r) from the first equation of (1.8},
which becomes in the X, r varlables

a a 2
ArSr 4 (Mg — Ay) o = 2 4, + 4, (1.15)

Finally, by using (1.13) we find ¢ = ¢{A, r), which yields the complete
sclution of the problem.

Hence, the successive integration of (1.1%), (1.13) and {1.15) permits
the construction of the solution of l1sotropic motions not 1n an associated
reference system where a = 0 , but in one connected with the isolated cen-
ter of symmetry. The three-dimensional velocity o , measured in such ref-
erence systems, has a specific physical meaning in the formulation of bound-
ary value problems both in a specifled extrenal gravitational field, and in
the study of motions in intrinsic gravitationasl fields.

Moreover, in the limiting case of no gravitational fileld (Galilean metric)
Equations (1.5) transform into the hydrodynamic equations of the special
theory of relativity, while such a transition is meaningless in an associated
reference system since the latter is determined at once from the condition
that the flux of energy-momentum equals zero. In the case of lsentropic
motions the system (1.14) reduces to two equations.

2. General solutions of partiocular oases of the sguation of state.
28) Dustlike material (*). In cosmological problems it is
customarily assumed that the pressure is negligibly small as compared to the
mean density of matter in the universe, i.e. p <& & = pcﬂ. If we put p=0,

0 =const , then w =0, g 1lnov =-—4g 1nec and Equations (1.14) simplify
radically 1 Jal Ja?
A, ) = =1—4
(ec)z(“ E7y ‘axnr> %, ® 1

dlne dlne 1 dlna dlna . _As ;
Alm——dw+ﬁ<x‘hm ‘T‘AZ%“—E'}T')*‘_Z'AI 2 =0 (21)

*) R.Tollmann ([1], p.344) first solved the problem of motion of & g&s with
p = 0 1in the associated reference system. However, the velocities for the
internal Schwarzschild problem were not evaluated in this solution.
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The first equation of this system is easily integrated
92 = 1 ——62/82 = AI(DI (a?') (22)
Furthermore, we find from the second equation of (2.1)
- \ .
6= (@(ar) — B, ) B, B, —oexp (833 dr), By= SJ&,Bl dh,
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Utilizing {2.2) and (2.3), we obtain for the function w(r, 1) at p =« 0
from Equation (1.15)

av av [%re o axre
Aige + 6_?\.-(6—3 T } (cB)r + (2.4)
This equation is also solved 1n quadratures. The equation of the charac-

teristics a e"(WBl (®:— By i)
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vields x,(x,7) . The second integral determines the solution along the
characteristics

v(h,7) = 2= (T (1 — 410) (@2 — By dr +alnr + % (41 (b, 7)) (2.5)
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Finally, the first equation of (1.13) gives the last quadrature
1 ¢ Oyexp{—12[h L v (A, r)]}dr
t=______S 1exp {—Y3[h 4+ v{ _)}} + 9 (r) (26)
xre) Y1— 4,0, (0;— B:) By

Hence, a general solution has been obtained for the problem of the motion
of dustlike material, given by the integrals (2.2) to (2.6) and depending on
the four arbitrary functions &, ¢, ¥, y .

2

In solving concrete boundary value problems it 1s necessary to specify
the initlal veloclty distribution g,= 6,(x, 7} and to determine %, after
which 1t 1is easy to find ®,, ¢, x .

b) Ultra-relativisticec approximation
Let us consider the case of adiabatic motions with velocities close to the
velocity of light. Let us put g/p = 1 —~ 22 , where A <« 1, Neglecting
higher orders iIn A let us write the system (1.5) and (1.8) as

61n(Wz:) 6ln(Wv) o, o e —
4 + =7 A'a‘f+3;"—“[ 7

oIl anl s as ’

Let us note that

aln (Wv) d1n (Wv) ds

dIn(Wv) = dp + 2207

The first equation of this system, taking the fourth into ascount, ylelds



854 S.M.Kolesnikov and K.P.Staniukovich

ap op 2 ap
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We transform the third equation of (2.7) analogously

6(1naAt+?») + o(1n£‘+k)_2(61(3npw>a( m,_}_ ) (2.9)
For the ultra-relativistic equation of state
p=(k—1)e, Wo = v (ev + po) = 222,
Hence, taking into account that pv*= ¢ we find
(M) _ k=t (E)ln(Wv)) _ k=2
9p /o kp op /o kp

Substituting these values into (2.7) and transforming to the independent
variables p, r , we obtain the system

o\ ?&-—0
or op
d(lnA+A) d(ln A+ 2) bik—1)
g —p SN L RS =0 (2.10)
ds ds _ 2kp
= b =0, A—-——+b— =0, b=gog

The first equation is integrated at once

{—er = LP(1)—a, 1= prows, o= XPC—k) (944

6 — bk
After this, it is easy to write the solution of the second equation of
2.10
10§ e, () prev — (1— L P, o) Fopre-re (2.12)
The third equation of (2.10) yilelds
a=Fs(y) (2.13)

The fourth equation of (2.10) may be solved after determining v = vw(p,”)
since 4 = exp[#(:r — v)] enters therein. To determine v we use the second
equation of (1.8) written in the p , r variables, where in our approxima-
tion

at’ 6(7\.+v) [31 6(),—}-'\7) =0 2 14
245 — g5 T (2.14)

We form the derivative 2at’/ar from the fourth equation of (2.10), and

we determine 3t’/3p from the second equation of (1.7)

o Oh D04V _ a9k Ak—1)A [a(x+v) s a(x+v)]
9p ~ T op T p wkp? or ap

This equation yields v = w(P, r) , after which we write the last quad-
rature for ct = Fu() + Sexp (Y2 {M(p, r) —~(p, )} dr (2.19)

The constructed solution depends on five arbitrary functions and solves
the problem posed.
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It can be said that the fundamental equations (1.5) and (1.7) gwhich per-
mit inclusion even of electromagnetic fields in the consideration) completely
describe centrally-symmetric radial flows in an intrinsic gravity field and
may be ustilized in cosmology of isotropic space. The general theory of
relativity 1s simply gas dynamics in Riemann space in thia sence.

It should be noted that the problem posed here of investigating exact
equations convenient for a description of the relativistic motion of a medium
in an intrinsic gravity field, may be solved by using the variational methods
of continua and the fleld equations [2].
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